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Glenohumeral joint is primarily composed of two key 
bony structures: the humerus and scapula. Unlike 

many other ball-and-socket joints in the human body, the 
glenohumeral articulation exhibits limited bony congru-
ency but is characterized by a remarkable soft tissue sta-
bilization, providing stability through a wide range of mo-
tion. However, the architecture of the shoulder joint makes 
it susceptible to instability. The issue of shoulder instability 
is on the rise among athletic individuals engaged in high-
demand physical activities.[1]. In cases of instability, evalu-
ating the glenohumeral articulation often necessitates the 
use of advanced imaging techniques. This is due to the po-
tential risk of soft tissue injuries and structural deformities 
in the bone resulting from initial trauma or instability. It is 

not uncommon to encounter concurrent soft tissue and 
bone-related issues in the humerus and scapular glenoid 
following such occurrences.[1,2]

MRI encompasses a variety of sequences, each endowed 
with unique capabilities for distinct tissues or pathologies. 
Among these, the PD weighted MRI sequence is particularly 
valuable for assessing extremities. PD weighted MR images 
excel in simultaneously localizing both bone and soft tissue 
pathologies, offering superior soft tissue details compared 
to T1 sequences. However, it is important to note that dis-
criminating between soft tissue and bone can pose chal-
lenges in certain anatomical regions, such as bone-tendon 
interfaces.[3]

Objectives: Proton Density (PD)-weighted MRI sequence is particularly effective for detecting shoulder pathologies 
but, limited in accurately delineating bone structures due to noise and trauma-induced signal blurring. To mitigate this 
limitation, this study employed a CycleGAN framework to generate synthetic PD-weighted images from T1-weighted 
MRI scans to enhance the dataset.
Methods: A CycleGAN framework was used to generate synthetic PD-weighted images from T1-weighted MRI scans. A 
total of 1,330 axial PD-weighted MR images, including both original and CycleGAN-augmented images, were employed 
to train a YOLOv8 model for detecting the humeral head and scapular regions.
Results: The YOLOv8 model achieved a detection accuracy of 98.70% 91.20 % for humeral head and for scapula, respec-
tively, with an intersection over Union (IoU) threshold of 0.25.
Conclusion: This study demonstrates the potential of integrating CycleGAN and YOLOv8 for enhancing bone structure 
localization in PD-weighted MRI, particularly in challenging scenarios with noise and ill-defined borders.
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In computer-based diagnostic systems, segmentation and 
detection of anatomical regions hold pivotal roles in defining 
various pathologies. Segmentation of humeral head bone 
and scapula regions is imperative for soft tissue and bone dis-
crimination and ensuring precision in diagnostic procedures, 
facilitating effective treatment planning, and enabling the 
continuous monitoring of disease progression.[4, 5]

The use of variational methods, particularly in the field 
of medical image segmentation, offers a promising ap-
proach to improve the accuracy and robustness of diag-
nostic systems. Variational models often rely on energy 
minimization frameworks to model the underlying struc-
tures and boundaries within medical images. These tech-
niques allow for the smooth and precise delineation of 
anatomical regions, even in the presence of noise or com-
plex tissue boundaries, making them particularly useful in 
challenging imaging conditions like those of the shoulder 
joint. By modeling the segmentation process as an en-
ergy minimization problem, variational methods help to 
reduce errors and improve consistency in detecting soft 
tissue and bone regions.

A variety of deep learning algorithms have been em-
ployed for medical image segmentation, often catego-
rized into instance-based and semantic-based methods. 
Among these, object detection algorithms can be divided 
into single-stage (e.g., YOLO,[6] SSD, RetinaNet) and two-
stage methods (e.g., Mask R-CNN, Faster R-CNN, R-CNN). 
These methods, while effective in many applications, tend 
to focus more on the recognition and localization of ob-
jects in images rather than on the precise boundary delin-
eation that variational models excel at. In the context of 
shoulder imaging, there has been limited focus on the de-
tection and segmentation of the humeral bone and scap-
ula regions. Liu et al. used a convolutional neural network 
(CNN) to segment and quantify bone mineral density in 
the humerus, achieving high accuracy with a dataset of 
X-ray images.[8] Similarly, He et al.[9] introduced a recur-
sive learning framework combined with a deep end-to-
end network to segment bones in shoulder joint images, 
improving segmentation accuracy on small datasets with 
significant parameter variations.

Variational methods have proven especially useful in ad-
dressing the challenges of boundary detection in such 
complex anatomical structures. These methods can en-
hance the precision of segmentation by focusing on the 
underlying geometric properties of tissues, thereby im-
proving overall diagnostic accuracy. CycleGAN has been 
utilized in medical imaging to augment datasets and im-
prove segmentation performance. Studies have shown 

that combining such techniques with variational models 
can result in better image quality and more accurate delin-
eation of anatomical structures.[13-17]

In this study, while YOLOv8 was employed to delineate the 
humeral head and scapula regions in PD-weighted MR im-
ages. Via integration with variational methods a more ac-
curate and robust segmentation process was achieved. 
Combination of YOLOv8's faster inference time enhancing 
real-time diagnostics and the precision provided by varia-
tional models made it more suitable for medical diagnos-
tics, where both speed and accuracy are critical.

Methods

Dataset
A total of 665 axial Proton Density (PD)-weighted MRI scans 
were obtained from patients with shoulder instability. The 
dataset comprised 412 male and 253 female participants, 
with an average age of 27±5.2 years (range: 18–42 years). 
All scans were acquired using a 1.5 Tesla MRI scanner, with a 
slice thickness of 4 mm and an image resolution of 256×256 
pixels in DICOM format. To address the limitations associ-
ated with small datasets in medical imaging, the dataset 
was augmented using a CycleGAN model. This approach 
involved generating synthetic PD-weighted MRI images 
from T1-weighted MRI scans, effectively increasing the da-
taset size to 1,330 images. The dataset was then divided 

Figure 1. The first column represents the original PD-weighted axial 
MR image of the shoulder, while the second column shows the man-
ual segmentation results performed by an expert.
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into three subsets: 886 images for training, 200 images for 
validation, and 244 images for testing. Manual annotations 
of the humeral head and scapula regions were performed 
using the LabelMe tool as in Figure 1. The annotations were 
subsequently converted from COCO format to YOLOv8 for-
mat to ensure compatibility with the object detection al-
gorithm.

Preprocessing
The CycleGAN model was employed to translate T1-weight-
ed MRI images into synthetic PD-weighted MRI images us-
ing unpaired data. The model utilized cycle consistency 
loss to maintain anatomical accuracy and ensure the visual 
quality of the generated images. This augmentation step 
aimed to mitigate challenges posed by noise and the lim-
ited resolution of the original PD-weighted MRI scans, im-
proving the detection accuracy for the humeral head and 
scapular regions. A visual representation of the CycleGAN 
workflow is provided in Figure 2.

YOLOv8 Model Configuration
The YOLOv8 model, a state-of-the-art single-stage object 
detection algorithm, was configured to detect humeral 
head and scapular regions. Its architecture features CSP-
Darknet53 as the backbone, with 53 convolutional layers 
and cross-stage partial connections, and a self-attention-
based detection head for dynamic feature prioritization. 

Training was conducted over 150 epochs using the Adam 
optimizer (learning rate: 0.001) on an NVIDIA V100 GPU. 
Model performance was evaluated using precision, recall, 
and mean Average Precision (mAP) at IoU thresholds of 
0.5 and 0.5:0.90. These metrics provided comprehensive 
insights into the model’s detection capabilities across dif-
ferent levels of overlap.

Results and Discussion
The YOLOv8 model demonstrated high accuracy in detect-
ing the humeral head and scapula regions from PD-weight-
ed MR images, with notable improvements following data 
augmentation using CycleGAN, as summarized in Table 1.

CycleGAN-based augmentation significantly enhanced 
model performance, addressing the limitations of a small 
dataset and improving detection accuracy for both the hu-
meral head and scapula. For the humeral head, the mAP50 
score showed a slight decrease from 99.00% to 98.70% after 
data augmentation. However, the mAP50:90 score improved 
notably from 90.40% to 94.40%, indicating that CycleGAN 
augmentation enhanced the model's ability to detect the 
humeral head across varying image qualities and sizes. 
Similarly, the scapula region saw an increase in mAP50 from 
89.90% to 91.20%, with a corresponding improvement in 
mAP50:90 from 66.70% to 78.40%. This indicates that the Cy-
cleGAN-based augmentation was particularly beneficial for 
enhancing the model’s performance in detecting the scap-
ula, improving accuracy not only for more typical cases but 
also in challenging imaging scenarios. Overall, the combined 
effect of data augmentation led to an increase in the overall 
mAP50 score, from 94.50% to 94.95%, and in mAP50:90 from 
80.10% to 86.40%, demonstrating a robust enhancement in 
the model's ability to detect and localize anatomical struc-
tures in the presence of noise and inconsistencies inherent 
in PD-weighted MRI scans.

Despite the improvements in detection accuracy, the 
model's performance was less robust in cases involving 
complex conditions, such as edema, Hill-Sachs lesions, and 
scapular wing discontinuities as demonstrated in Figure 3. 

Figure 2. Illustration of CycleGAN generated synthetic PD-Weighted 
Images from T1- Weighted MRI Scans.

Table 1. Detection Performance of YOLOv8 Model for Humeral Head and Scapula Regions Before 
and After CycleGAN-Based Data

Augmentation		  Before data			   After data 
		  augmentation			   augmentation with 
					     CycleGAN

Class	 mAP50 (%)		  mAP50:90 (%)	 mAP50 (%)		  mAP50:90 (%)

Humerus	 99.00		  90.40	 98.70		  94.40
Scapula	 89.90		  66.70	 91.20		  78.40
Overall	 94.50		  80.10	 94.95		  86.40
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These pathological conditions introduced additional noise 
and intensity irregularities, which the model struggled to 
accurately detect. These challenges highlight the need for 
further refinement in both the augmentation techniques 
and the detection models. The presence of trauma-induced 
distortions, such as blurring and inconsistent signal intensi-
ties, affected the model's ability to maintain high detection 
accuracy in certain clinical scenarios.

High-quality data augmentation is crucial for improving the 
accuracy of these methods. While a limited number of studies 
in the literature employ CycleGAN for data augmentation and 
various versions of YOLO for object detection,[18,19] to the best 
of our knowledge, no published research has applied these 
methods to shoulder MRI images, particularly for detecting 
the humeral head and scapula regions. This demonstrates the 
originality of our approach in addressing the specific challeng-
es of shoulder MRI analysis.This process enriched the dataset 
by introducing a greater variety of training samples, thereby 
enhancing the robustness of the object detection model.

YOLOv8’s use of a feature pyramid network (FPN) proved 
effective in handling multi-scale detection, allowing for ac-
curate localization across varying object sizes. The ability to 
detect smaller and larger structures across different image 
scales helped in improving the detection of both the hu-
meral head and scapula. However, persistent issues related 
to noise and intensity irregularities in trauma-affected re-
gions suggest that there is still room for further improve-
ment in handling these complex conditions.

Conclusion
This study demonstrates the potential of combining Cy-
cleGAN-based data augmentation to improve YOLOv8 
based detection of humeral head and scapula regions in 
PD-weighted MRI scans. The findings show that data aug-
mentation can significantly enhance the model’s ability to 
handle noise and dataset limitations. While high accuracy 

was achieved in detecting normal anatomy, performance 
challenges remain in more complex pathological condi-
tions. Future work should focus on incorporating addition-
al augmentation methods, such as more varied synthetic 
transformations, and exploring hybrid models that com-
bine YOLOv8 with more specialized segmentation tech-
niques to further improve detection accuracy in clinically 
challenging scenarios.
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